上韩国网站梯子 Lightning-fast unified analytics engine

上韩国网站梯子
  • Spark 3.0.0 released (Jun 18, 2025)
  • Spark+AI Summit (June 22-25th, 2025, VIRTUAL) agenda posted (Jun 15, 2025)
  • Spark 2.4.6 released 上韩国网站梯子
  • Spark 2.4.5 released 上韩国网站梯子

Archive

上韩国网站梯子
Apache Spark™ is a unified analytics engine for large-scale data processing.

老王vnp2.2.29最新版2025

Run workloads 100x faster.

Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine.

Logistic regression in Hadoop and Spark

老王vnp2.2.29最新版2025

Write applications quickly in Java, Scala, Python, R, and SQL.

Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells.

df = spark.read.json("logs.json") df.上韩国网站梯子(上韩国网站梯子)   .select("name.first").show()
Spark's Python DataFrame API
Read JSON files with automatic schema inference

老王vnp2.2.29最新版2025

Combine SQL, streaming, and complex analytics.

Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, 上韩国网站梯子, and Spark Streaming. You can combine these libraries seamlessly in the same application.

老王vnp2.2.29最新版2025

Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources.

You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on 上韩国网站梯子, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.

老王vnp2.2.29最新版2025

Spark is used at a wide range of organizations to process large datasets. You can find many example use cases on the Powered By page.

There are many ways to reach the community:

  • Use the mailing lists to ask questions.
  • In-person events include numerous meetup groups and conferences.
  • We use JIRA for issue tracking.

老王vnp2.2.29最新版2025

Apache Spark is built by a wide set of developers from over 300 companies. Since 2009, more than 1200 developers have contributed to Spark!

The project's committers come from more than 25 organizations.

If you'd like to participate in Spark, or contribute to the libraries on top of it, learn how to contribute.

老王vnp2.2.29最新版2025

Learning Apache Spark is easy whether you come from a Java, Scala, Python, R, or SQL background:

  • Download the latest release: you can run Spark locally on your laptop.
  • Read the quick start guide.
  • Learn how to deploy Spark on a cluster.
网友网络加速超速器  回锅肉加速器官网最新版  scanwingy下载  老王vp加速器下载  excess 加速器  迅游加速器兑换码大全  ins要什么加速器